skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "D'Andrilli, Juliana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding likely to be extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are multispectral absorbance and fluorescence analyses of organic carbon dissolved in samples of well-mixed river thalweg water. Data include excitation-emission matrices, absorbance spectroscopy, as well as absorbance and fluorometric summary indices calculated at specific wavelengths of excitation and emission. Data are from the 2019 water year (1 Oct 2018 to 30 Sep 2019). Data were collected on the Upper Clark Fork River (USGS HUC 17010201) at 13 project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA. 
    more » « less
  2. Abstract The segregation of bacteria, inorganic solutes, and total organic carbon between liquid water and ice during winter ice formation on lakes can significantly influence the concentration and survival of microorganisms in icy systems and their roles in biogeochemical processes. Our study quantifies the distributions of bacteria and solutes between liquid and solid water phases during progressive freezing. We simulated lake ice formation in mesocosm experiments using water from perennially (Antarctica) and seasonally (Alaska and Montana, United States) ice‐covered lakes. We then computed concentration factors and effective segregation coefficients, which are parameters describing the incorporation of bacteria and solutes into ice. Experimental results revealed that, contrary to major ions, bacteria were readily incorporated into ice and did not concentrate in the liquid phase. The organic matter incorporated into the ice was labile, amino acid‐like material, differing from the humic‐like compounds that remained in the liquid phase. Results from a control mesocosm experiment (dead bacterial cells) indicated that viability of bacterial cells did not influence the incorporation of free bacterial cells into ice, but did have a role in the formation and incorporation of bacterial aggregates. Together, these findings demonstrate that bacteria, unlike other solutes, were preferentially incorporated into lake ice during our freezing experiments, a process controlled mainly by the initial solute concentration of the liquid water source, regardless of cell viability. 
    more » « less
  3. Abstract High‐resolution mass spectrometry (HRMS) has become a vital tool for dissolved organic matter (DOM) characterization. The upward trend in HRMS analysis of DOM presents challenges in data comparison and interpretation among laboratories operating instruments with differing performance and user operating conditions. It is therefore essential that the community establishes metric ranges and compositional trends for data comparison with reference samples so that data can be robustly compared among research groups. To this end, four identically prepared DOM samples were each measured by 16 laboratories, using 17 commercially purchased instruments, using positive‐ion and negative‐ion mode electrospray ionization (ESI) HRMS analyses. The instruments identified ~1000 common ions in both negative‐ and positive‐ion modes over a wide range ofm/zvalues and chemical space, as determined by van Krevelen diagrams. Calculated metrics of abundance‐weighted average indices (H/C, O/C, aromaticity, andm/z) of the commonly detected ions showed that hydrogen saturation and aromaticity were consistent for each reference sample across the instruments, while average mass and oxygenation were more affected by differences in instrument type and settings. In this paper we present 32 metric values for future benchmarking. The metric values were obtained for the four different parameters from four samples in two ionization modes and can be used in future work to evaluate the performance of HRMS instruments. 
    more » « less